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Abstract

COLAB is a laboratory for studying tools that facil-
itate collaboration and sensemaking among groups of
human analysts as they build interpretations of unfold-
ing situations based on accruing intelligence data. The
laboratory has three components. TheHats Simulator
provides a challenging problem domain involving thou-
sands to millions of agents engaged in individual and
collective behaviors, a small portion of which are terror-
ist. The second component, theAIID Bayesian black-
board, is an instrumented working environment within
which analysts collaborate to build their interpretation
of the problem domain. The third component is a web-
based user interface that integrates theTrellis hypoth-
esis authoring and management tool with a query lan-
guage to allow human analysts to interact with AIID
and each other. Looking to the big picture, COLAB
is not “merely” a laboratory for studying collaboration
and shared knowledge creation. COLAB is a tool to
explore and develop the analyst working environment
of the future, in which analyst tools and methods for
collaboration in edge organizations are developed and
tested. We present COLAB and its components and out-
line our plans for the system.

Introduction
The COLAB Project brings together a large scale terrorist
simulator, a collaborative intelligence analysis environment,
and a user interface to produce a prototype end-to-end sys-
tem for intelligence analysis. The simulator is operational
and has been used in several studies, including providing
data for part of the AFRL EAGLE project and assessing
algorithms for relational data mining (Cohen & Morrison
2004; Morrisonet al. 2005). The intelligence analysis envi-
ronment (Suttonet al. 2003; 2004) and interface are under
development. The complete system has three intended ap-
plications:

1. An environment for training intelligence analysts

2. A testbed for intelligence analysis tools

3. A configurable laboratory to test models of command and
control organization structure in an intelligence analysis
setting.

By way of introduction, we focus here on the third applica-
tion. In their bookPower to the Edge(2003), Alberts and

Hayes explore a vision of the future of command and con-
trol that changes fundamentally the relationships between
organization members, how they interact, the information
they have access to, and their decision making capabilities.
In an edgeorganization, the traditional hierarchical struc-
ture of an organization is flattened so that decision-makers
are no longer insulated from information directly available
to those “in the field.” Alberts and Hayes propose that,
properly realized, an edge organization has greater flexibil-
ity to respond to crises and changes (self-organization and
self-synchronization), and decision-making is enhanced by
ensuring all of the relevant information is available, rather
than being “lost” in, or obscured by, the bureaucracy of
middle-management. This is an exciting vision and would
seem to address many of the challenges faced by the na-
tion’s security organizations. But there are many details to
be worked out. How exactly do we implement an edge orga-
nization? And, are edge organizations appropriate for large-
scale intelligence analysis tasks? One approach to answer-
ing these questions is by computer simulation of organiza-
tion work flow and information access (Levittet al. 1994;
Nissen & Levitt 2004). COLAB provides a complementary
approach as a configurable laboratory environment in which
to conduct controlled experiments with actual human ana-
lysts working together on an artificial but challenging intel-
ligence analysis problem.

Consider the following scenario. Several human analysts
work together in the COLAB environment to develop an in-
terpretation of events in a simulated world. Their goal is to
identify and stop terrorist agent activities in the simulator
while trying to keep their costs low. Obtaining information
about the simulation is expensive and there are penalties for
making false arrests and failing to identify terrorist plots.
By design, each player has a different view of the informa-
tion in the simulated world and none has all the relevant in-
formation. Each player has her own workspace where she
can store and process information that she gathers from the
simulator. The players collaborate via a shared workspace
where they can post hypotheses and data they think is rele-
vant to the larger analysis. This shared space becomes the
collective interpretation of the state of the simulator. By
monitoring this interpretation a player can identify trends,
patterns, and gaps in the corporate intelligence. She will
also develop trust (or mistrust) in her colleagues by noting



the quality of their analyses.
We envision COLAB being configurable along the fol-

lowing dimensions to test the strengths and weaknesses of
proposed analysis environments:

1. Command and control structure: Participants may be or-
ganized into a strict hierarchy; analysts at the “bottom”
are responsible for particular aspects of analysis, with
supervisors distilling analyses and reporting to decision-
makers who actually take actions (e.g., raising an alert) in
the simulator. Or, each analyst may have the same access
to information and there is no explicit reporting hierar-
chy; each analyst is equally responsible for analysis and
decision-making, and any command structure must be ne-
gotiated.

2. Communication channels: Analysts may be allowed to
communicate directly via text messaging or voice, or only
through postings to a shared workspace. Analysts may be
in the same room or in separate locations.

3. Information access: Access to information may be varied.
Analysts may each have access to only one aspect of the
problem domain and must collaborate to build a global
picture of the unfolding scenario. Alternatively, access to
domain information may overlap and it is up to the group
to determine how to divide information analysis responsi-
bilities.

4. Trust and information quality: Information quality may
be varied, for example by modeling information sources.
Analysts must determine what information sources are
trustworthy, and likewise must learn to establish trust in
their fellow analysts. As a variation on this theme, one or
more analysts could be “plants” in the experiment, pur-
posely conducting poor or inconsistent analysis. How are
variations in information and analysis quality within the
organization identified and managed?

5. Corporate memory and knowledge preservation: After
conducting analysis for a period of time, an original anal-
ysis team member may be replaced by a new analyst.
What is the effect of introducing new analysts in the mid-
dle of sensemaking? How do they get up to speed? How
is prior knowledge effectively preserved and communi-
cated?

6. Assessing cognitive load: Analysts tell us they already
receive too much information. How much information
should a single analyst be responsible for managing? How
do we determine when analysts have reached that limit
or have cycles to spare? How can analysts communicate
their cognitive load status, and how do organization con-
ditions affect this communication and the ability to shift
work load?

7. Affects of disruption to sensemaking: There are many
interesting case studies of how organizations respond to
crises (e.g., Weick 1993). What happens if the analysis
environment is stressed? We may test this by making por-
tions of the workspace inaccessible or degrade communi-
cation channels during an analysis session. We can study
how analysts maintain or recover sensemaking in the face
of disruption.

In the following sections, we present the components of
the COLAB system. We begin with an overview of the Hats
Simulator, which provides a challenging intelligence anal-
ysis problem domain. We then present AIID, a blackboard
system that serves as the core to the analysis working envi-
ronment. We then turn to the web-based interface to CO-
LAB. The interface incorporates the Trellis argument au-
thoring tool as a tool for hypothesis representation and the
query language for accessing and manipulating information
in AIID. We conclude with a brief walkthrough of the sys-
tem, a discussion of related work, and future plans for CO-
LAB.

The Hats Simulator
The Hats Simulator is designed to be a light-weight proxy
for many intelligence analysis problems. The simulator is
implemented and currently manages the activities of up to
a hundred thousand agents. The emphasis in Hats is not
domain knowledge but the management of enormous num-
bers of hypotheses based on scant, often inaccurate infor-
mation. By simplifying agents and their elementary behav-
iors, we de-emphasize the domain knowledge required to
identify terrorist threats and emphasize covertness, complex
group behaviors over time, and the frighteningly low sig-
nal to noise ratio. Playing the game successfully requires
collaboration, making this domain ideal for studying analyst
group sensemaking.

AnalystHats Simulator Information
Broker

• Meeting
  Planner
• Scoring

• Cost
• Noise Model Analyst's Tools

Figure 1: The Hats Simulator architecture

The Hats Simulator consists of the core simulator and an
information broker (see Figure 1). The simulator core in-
cludes a generative meeting planner that plans hat behaviors
based on the context of the unfolding scenario. The core
also keeps track of analyst actions, assessing a score at the
end of a scenario run. The information broker is responsible
for handling requests for information about the state of the
simulator and thus forms the interface between the simula-
tor and the analyst and her tools. In the following sections
we describe the Hats domain, a discussion of classes of hy-
potheses about the domain, the information broker, analyst
actions, and scoring. (Details about population generation,
meeting planning and the information broker can be found
in Cohen & Morrison 2004, and Morrisonet al. 2005.)

The Hats Domain
The Hats Simulator models a society in a box consisting of
many very simple agents, calledhats. Hats get its name from
the classic spaghetti western, in which heroes and villains
are identifiable by the colors of their hats. The Hats soci-
ety also has its heroes and villains, but the challenge is to
identify which color hat they should be wearing, based on



how they behave. Some hats areknown terrorists; others
arecovertand must be identified and distinguished from the
benignhats in the society.

Hats is staged in a two-dimensional grid on which hats
move around, go to meetings and trade capabilities. The
grid consists of two kinds of locations: those that have no
value, and high-valued locations calledbeaconsthat terror-
ists would like to attack. All beacons have a set of attributes,
or vulnerabilities, corresponding to thecapabilitieswhich
hats carry. To destroy a beacon, a task force of terrorist hats
must possess capabilities that match the beacon’s vulnerabil-
ities, as a key matches a lock. In general, these capabilities
are not unique to terrorists, so one cannot identify terrorist
hats only on the basis of the capabilities they carry.

The Hats society is structured by organizations. All hats
belong to at least two organizations and some hats belong to
many. Terrorist organizations host only known and covert
terrorist hats. Benign organizations, on the other hand, may
contain any kind of hat, including known and covert terror-
ists.

Hats act individually and collectively, but always plan-
fully. In fact, the actions of hats are planned by a gener-
ative planner. Benign hats congregate at locations includ-
ing beacons. Terrorist hats meet, acquire capabilities, form
task forces, and attack beacons. The purpose of the plan-
ner is to construct an elaborate shell game in which capa-
bilities are traded among hats in a potentially long sequence
of meetings, culminating in a final meeting at a target. By
moving capabilities among hats, the planner masks its inten-
tions. Rather than directing half a dozen hats with just the
capabilities required for a task to march purposefully up to a
beacon, instead hats with required capabilities pass them on
to other hats, and eventually a capable task force appears at
the beacon.

The Information Broker
The information broker provides information about the state
of the Hats world. The information broker will respond
to questions such asWhere isHat27 right now? It will
also provide information by subscription to analysts’ tools,
which in turn make information broker requests. For ex-
ample, a tool might process requests like,Identify everyone
Hat27 meets in the next 100 steps, or, Tell me ifHat27 ap-
proaches a beacon with capabilitiesc1, c7 or c29. In later
sections we describe facilities available in COLAB for mak-
ing similar requests.

Some information is free, but information about states
of the simulator that change over time is costly. Free in-
formation includes information about the population (who
the known terrorists are), the simulator world (world-map
dimensions), and some event bookkeeping (locations of at-
tacks, a list of currently arrested hats).

Other types of information require payment and the more
one pays, the more accurate the report returned. The rela-
tion between payment and noise and how requested reports
are made noisy is described in Cohen & Morrison (2004)
and Morrisonet al. (2005). There are five elementary report
types an analyst can pay for: (1) the hats at a specified loca-
tion in the Hats world, (2) the location of a specific hat, (3)
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Figure 2: Schematic representation of classes of hypothe-
ses about the Hats domain. Large ovals indicate hypothe-
sis classes, small ovals represent specific hypothesis types.
The shades of gray indicate estimated duration of hypothe-
sis accuracy or relevancy. Links between ovals indicate de-
pendency relations between hypothesis types. TheBeacon
Threatened? hypothesis type is outlined in bold, indi-
cating that it is one of the most important target hypotheses
of analysis.

the capabilities currently carried by a hat, (4) the list of par-
ticipants in a suspected meeting (the analyst must provide
the time and location of the meeting), and (5) information
about capability trades that occurred in a meeting.

The Space of Hats Hypotheses
Analysts rely on reports returned by the information broker
to construct a model of observed events that can explain and
predict hat behaviors. The goal of this analysis is to identify
threats to beacons and, if possible, arrest terrorist task force
hats before they carry out an attack. In the process of doing
so, analysts will keep track of hat locations, the capabilities
hats carry, and the meetings they participate in. They will
also construct hypotheses about the intents of hats, associate
hats that appear to be members of a task force, and even-
tually form hypotheses about organization membership and
intent.

Figure 2 represents two properties of Hats domain hy-



potheses that analysts will need to express:

1. Dependencies of hypotheses on one another are repre-
sented by the links and arrows in the figure. For example,
a hypothesis that there exists a task force of hats depends
on an observed pattern of meetings between hats; hats that
are members of a task force are, in turn, likely members
of the same organization. Similarly, hypotheses about the
intents of individual hats inform hypotheses about the in-
tents of the task forces and organizations to which they
belong.

2. Properties of the simulation change at different time
scales, so hypotheses about aspects of the domain will
have to be updated at different rates. Figure 2 represents
four different relative time scales using different shades
of gray. For example, the location of a hat changes almost
every tick, the set of capabilities a hat is carrying updates
roughly every 25 ticks, but the intent of a hat (whether
it is terrorist or benign) remains constant throughout the
game.

In the later section describing the COLAB interface, we de-
scribe methods for representing the relations between hy-
potheses as well as representing time.

Actions
We may not be able to stop an attack, but if we know it is
coming, we can prepare and minimize loss. This is the in-
spiration behind modelingalerts. Each beacon can be in one
of three alert levels: off (default), low or high. These corre-
spond to the conditions of no threat, a chance of an attack,
and attack likely. The analyst decides which level a beacon
alert is set to, but the Hats Simulator keeps track of alert
states over time and whether an actual attack occurs while
the state is elevated. The simulator keeps statistics including
counts of hits (occurrences of attacks during elevated alerts)
and false positives (elevated alerts that begin and end with
no beacon attack occurring). The goal of the analyst is to
minimize the time beacon alerts are elevated. High alerts
are more costly than low ones. On the other hand, if an at-
tack does occur on a beacon, a high alert is better than a low
alert, and a low alert is better than none.

Analysts can also issuearrest warrantsfor hats in order
to prevent beacon attacks. Arrests are successful only when
the targeted hat is currently a member of a terrorist task
force. Attempted arrests under any other conditions, includ-
ing hats that are terrorists but not currently part of a terrorist
task force, result in a false arrest (a false positive). Under
this model, a hat can be a terrorist but not be guilty of any
crime. Unless terrorist hats are engaged in ongoing terrorist
activities, their arrest incurs penalties. While this is a simple
model, it places realistic constraints on the analyst’s choice
of actions. Furthermore, successful arrests do not guarantee
saving beacons. A beacon is only attacked when some sub-
set of members from a terrorist task force successfully carry
the capabilities matching the target beacon’s vulnerabilities
to a final meeting at that beacon. It is possible to success-
fully arrest a terrorist task force member but the other ter-
rorist taskforce members still have the capabilities required
to attack the beacon. However, if the analyst successfully

arrests a terrorist task force member carrying required capa-
bilities that no other task force member has, then the final
meeting of the task force will take place but it will not be
attacked. This is counted as a beacon save.

Scoring
As the simulation progresses, three kinds of costs are ac-
crued:

1. The cost of acquiring and processing information about a
hat. This is the “government in the bedroom” or intrusive-
ness cost.

2. The cost of falsely arresting benign hats.

3. The cost of harm done by terrorists.

The skill of analysts and the value of analysis tools can be
measured in terms of these costs, and they are assessed au-
tomatically by the Hats Simulator as analysts play the Hats
game. At the end of a simulation run, a final report is gener-
ated that includes the following four categories of scores:

1. Costs: the total amount of “algorithmic dollars” spent on
information from the Information Broker.

2. Beacon Attacks: including the total number of terrorist
attacks that succeeded and the total number of attacks that
were stopped by successful arrests

3. Arrests: the number of successful arrests and the number
of false arrests (false positives)

4. Beacon Alerts: the number of low and high alert hits and
false positives.

AIID
The second component of COLAB consists of AIID: an
Architecture for theInterpretation ofIntelligence Data.
AIID is based on a blackboard architecture, and is designed
to represent relational data and integrate a variety of intelli-
gence analysis algorithms as problem solving components.
In work going on in parallel to COLAB development we are
developing AIID as aBayesian blackboardsystem, combin-
ing the technologies of blackboard systems and incremen-
tal construction of Bayesian belief networks from network
fragments (Suttonet al. 2003; 2004). Our goal is to eventu-
ally include Bayesian network construction in COLAB, but
here we focus on the components of AIID used to implement
COLAB analysis workspaces. We first introduce blackboard
systems and then describe the COLAB blackboard compo-
nents.

Blackboard Systems
Blackboard systems are knowledge-based problem solving
environments that work through the collaboration of inde-
pendent reasoning modules (Engelmore & Morgan 1988;
Nii 1989; Corkill 1991). More recently blackboards have
been recognized as platforms for data fusion (Corkill 2003).
They were developed in the 1970s and originally applied
to signal-processing tasks. The first, HEARSAY-II (Erman
et al. 1980), was used for speech recognition, employing
acoustic, lexical, syntactic, and semantic knowledge. Other



systems were applied to problems as diverse as interpreta-
tion of sonar data, protein folding, and robot control (Nii
1989).

Blackboard systems have three main components: the
blackboard itself, knowledge sources, and control. The
blackboardis a global data structure that contains hypothe-
ses or partial solutions to the problem. The blackboard is
typically organized intospacesrepresenting levels of ab-
straction of the problem domain. For example, HEARSAY-
II had different levels for phrases, words, syllables, and so
forth. Knowledge sources(KSs) are small programs which
post results of local computations to the blackboard. (Ide-
ally, knowledge sources interact only by observing and post-
ing to the blackboard.) DifferentKSs use different types of
knowledge: for example, one might use a grammar to gen-
erate words which are likely to occur next, while another
might detect phonemes directly from the acoustic signal.
While no single knowledge source can solve the problem,
working together they can. Getting knowledge sources to
“work together” is the task of blackboardcontrol (Carver &
Lesser 1994). Generally it works like this:KSs watch for
particular kinds of results on the blackboard; for instance, a
phrasalKSmight look for hypotheses about adjacent words.
When aKS is “triggered” it creates aknowledge source ac-
tivation record(KSAR) in which it requests the opportunity
to run, make inferences, and modify the blackboard. These
KSARs are ranked, and the top-rankedKSARis invited to do
its work. Just as knowledge sources are used for manipu-
lating data on the blackboard, the control framework of the
blackboard may also be broken up into control knowledge
sources, each representing knowledge about aspects of the
control problem. Domain and controlKSs are often distin-
guished from one another because of the roles they play in
the functioning blackboard.

The operation of a blackboard system can be seen as a
search for hypotheses that explain the data at each level of
abstraction, using theKSs as operators. Rather than search
bottom-up (i.e., from the data level to the most abstract level)
or top-down, blackboard systems can search opportunisti-
cally, dynamically ratingKSARs based on the current data
and on the partial solutions that exist so far.

The COLAB Blackboard
Blackboard Spaces Figure 3 depicts the COLAB black-
board and its component spaces. The lower three spaces
are responsible for representing reports from the informa-
tion broker as atomic assertions about entities and relations
in the Hats domain. Take, for example, an information bro-
ker request about the members of a meeting hypothesized to
have taken place at a particular location and time. The report
returned from the information broker is posted to theRaw
Reportspace and consists of a list of hats that were likely at
the meeting. There are several entities and atomic relations
this report represents: that there are hats, there was a meet-
ing, the meeting took place at that time and location, at that
time the hats were at that location, and the hats were partici-
pants in the meeting. We want to decompose the report into
these atomic assertions because we want the analyst to be
able to refer to each component individually or manipulate
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Scorecards

Relational
Tables
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Query
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Analysis
Tools

Sensors,
Alerts
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Figure 3: The COLAB blackboard. Each box on the black-
board represents a blackboard space; theHypothesisspace
contains two subspaces. The oval at the bottom of the figure
represents the information broker and the tabs to the right
represent types ofKSs. Arrows indicate flow of information
that results from knowledge source processing.

and combine the components in novel ways. For example,
the analyst may want to ask how many meetings a given hat
was in over a period of time; or the analyst may only want
to know where that hat was at that time, irrespective of what
meeting the hat was in. Later we will describe the query
language that makes this possible.

We want this decomposition, but we also want to preserve
the information that each atom was purchased from an in-
formation broker request. Recall that most information from
the information broker comes at a price, and the level of pay-
ment determines the accuracy of the report returned. Each
atomic assertion is therefore stored on theProcessed Reports
space along with (1) the time at which the information bro-
ker request was made, (2) the time at which the event was
reported as having taken place in the Hats world, and (3) the
level of payment. Payment level serves as a proxy for how
reliable the report is.

Finally, each atomic relation and entity is represented by
a “label” in theLabelsspace. Labels are linked to each re-
port that references them. For example, ifHat27 took place
in the meeting from the example above, then there is a label
for Hat27 that is linked to the atomic report asserting that it
participated in the meeting and also the report that it was at
that location at that time. (In the same way, there is a label
identifying the meeting and it is linked to reports about the
meeting.) If a referenced entity or relation does not already
exist, a new label is created for it when the report is pro-
cessed. Labels also have other sources than reports; as we
will discuss below, labels comprise the vocabulary available
to the analyst to express hypotheses. Labels also serve as an
index into the space of processed reports and are used both
in query processing and as an index for blackboard brows-
ing.



The Hypothesesspace of the COLAB blackboard is re-
served for representing analyst work. The space hosts two
subspaces, one for representing data structures used by Trel-
lis, the other for analyst-defined hypotheses and the results
of queries. We will discuss these further in the next section.

Knowledge Sources A class ofKSs calledreport triage
KSs handle processing information broker reports and up-
dating the Labels and Processed Reports spaces. Another
class ofKSs consist of algorithms available to the analyst
as analysis tools or “services.” The beauty of the black-
board architecture is that it is specifically designed to facil-
itate collaborative software (Corkill 2003); as long as these
algorithms can read representations on the blackboard and
write output to the blackboard that is interpretable by other
algorithms, they can participate in blackboard processing.
Some examples of analysis services include algorithms for
assigning suspicion scores to hats (Galstyan & Cohen 2005;
Macskassy & Provost 2002), identifying community struc-
ture (Adibi, Cohen, & Morrison 2004; Newman 2003), and
reasoning about behaviors over time. Some services may
require their own blackboard spaces for specialized process-
ing, such as a graph representation used for community find-
ing, but the results of any service are reported to the Raw
Reports space as a report, just like a report from the infor-
mation broker.

We are currently prepared to offer an implementation of
Newman’s (2003) community finding algorithm as a service
and plan to add more services in the future; service configu-
rations will also depend on the role of the laboratory in ex-
perimental design. The analyst will be responsible for run-
ning or scheduling any services as well as specifying what
data on the blackboard they take as input.

There are two other classes ofKSs whose functionality
will be discussed in more detail in the next section. One
set ofKSs handles processing of queries issued by users or
originating from other knowledge sources. The other set in-
cludes user-defined knowledge sources such assensorsand
alerts. Treating sensors and alerts as knowledge sources al-
lows them to be scheduled for repeated activation and run
in the background, automating routine checks of conditions
such as whether a hat on a watchlist has moved within some
distance of a beacon. Sensors and alerts can themselves is-
sue queries.

Control Blackboard control in the first release of COLAB
will be basic, consisting of a priory queue-based agenda
shell. Report and query processing will have high prior-
ity, pushing information onto the blackboard for use as soon
as reports arrive and queries are made. Users will then be
able to assign priorities to sensors, alerts and other available
analysis algorithms. One approach to blackboard control we
are investigating includes assessing the value of the informa-
tion we may request from the information broker. In some
cases, the utility of certain information is overshadowed by
its cost. Value of information is a kind of control knowledge
and would be embodied in a control knowledge source. In
general, we treat control as an open development issue in
COLAB that will be shaped by performance issues expected
to arise once the system is operational with multiple users.

Finally, COLAB will support multiple collaborating an-
alysts. Each analyst will have their own configuration as
depicted in Figure 3. They will ask for information from
an information broker and have their own local store of col-
lected reports. There will also be asharedHypotheses space
to which they can publish portions of their own blackboard
spaces to make their analyses available to others.

Labels and Representing Hypothesis

Analysts need to be able to express their hypotheses and rea-
soning about evidence collected in the report spaces. At the
same time, we want these expressions to be in a form that
permits processing by knowledge sources so that, for exam-
ple, an analyst’s expressions can be the subject of a query
or otherKSprocessing. Ideally, the analyst would write free
text and natural language processing techniques would auto-
matically translate the text into a formal expression that can
be used by any component of the system.1 We take a mid-
dle path that mixes free text with formal vocabulary. For-
tunately, the ontology of the Hats domain is so simple that
we can go far with a limited vocabulary. In COLAB, the
contents of the Labels space provide that vocabulary.

From processed information broker reports we get labels
for hats, capabilities, beacons, and meetings. We also get
some simple atomic relations, such as “has-capabilities.”
However there are other aspects of the hats world that the
analyst will need to represent. A small set of additional la-
bel types are provided. Some examples include:beacon-
threatened, group, organization, overlap, is-maliciousand
is-benign. The first three types represent specific event and
entity types. Instances of these types are created by append-
ing a unique number to the the label name. For example,
beacon-threatened-15 represents a specific beacon-
threatened event, andorganization-05 is a particular
hypothesized organization. The group label is used both to
represent hypothesized task forces as well as more general
groupings of hats.Overlapexpresses a binary relation and
can be used to express that one group overlaps another in
membership, or that capabilities carried by a group over-
lap with the vulnerabilities of a beacon. The last two la-
bel types are unary predicates. For example, combining
organization-05 with is-benign asserts that orga-
nization 05 is benign. All of these labels are linked to any
instances of their use.

Analysis tools may also generate instances of these (and
other) label types as a result of their operation. For example,
a group finder algorithm will return a set of hypothesized
groups consisting of lists of hats. These results are posted
to the Raw Reports space and processed, resulting in group
labels that link to the corresponding reports on the Processed
Reports space.

1In the section on related work we discuss some promising
methods that are beginning to bridge the gap between free text and
formal representation. We will explore incorporating some of these
techniques in future COLAB development.



The COLAB Interface
Up to this point we have described the problem domain and
the core architecture supporting the analyst working envi-
ronment. We now describe the third component of COLAB:
the user interface.

The first decision we had to make was what platform to
implement the interface in. Making it native to our develop-
ment platform2 would enable tight integration with the CO-
LAB blackboard and provide high performance, interactive
graphics. However, we want the laboratory to be easily de-
ployed in a variety of different conditions depending as little
as possible on specific hardware and software. For this rea-
son, we decided to make the interface web-based, running
in a standard web browser. In this configuration, AIID and
the Hats Simulator run on their own server and anyone with
a computer connected to the internet and running a modern
web browser will be able to connect to COLAB and partic-
ipate as an analyst. This also facilitates future multi-analyst
participation.

The central theme of COLAB interface design isinforma-
tion management. This means making information stored
on the blackboard as accessible as possible and providing
mechanisms for analysts to author and manage their hy-
potheses. Information management is an open research chal-
lenge that includes issues in knowledge engineering, query
languages, data mining and data visualization. Our design
philosophy is to start simple and use existing technologies
as much as possible. For hypothesis representation, we are
integrating the Trellis argument authoring tool. For informa-
tion access we are implementing a relational query language
similar to SQL. And our initial interface for browsing the
blackboard will be hypertext-based.

Trellis
In the discussion about Hats domain hypotheses and their
relations (see Figure 2) we noted that analysts will need to
express how hypotheses depend on one another. For exam-
ple, the hypothesis that a beacon is threatened (is about to be
attacked) depends on lower level hypotheses about the mem-
bers of a group, whether the group has the capabilities to at-
tack the beacon, and the group’s intent. Group intent, in turn,
depends on the intent of the individuals in the group. Ana-
lysts need a way to make these relationships explicit so that
they can express evidential support and frame the structure
of the argument supporting (or denying) a target hypothesis.
The Trellis argument authoring tool makes this possible.

Trellis was originally developed as an interactive tool to
assist users in constructing arguments based on sources gath-
ered from the internet (Gil & Ratnakar 2002). Users cre-
ate statements that combine free text and references to in-
ternet documents. These statements are then combined and
related using a set of structured argument connectors. In
the original version of the system, a variety of connectors
were provided, such as “is elaborated by,” “is supported by,”
and “stands though contradicted by.” This original system,
now dubbed “Rich Trellis,” was found to offer the user too
many options, leading to multiple ways of expressing the

2Macintosh OS X 10.2.8 running Macintosh Common Lisp 5.1

same line of reasoning and inconsistent use of the argu-
ment connectors (Chklovski, Ratnakar, & Gil 2005). Both
of these sources of ambiguity are problematic for manag-
ing and communicating hypotheses. Two new versions of
Trellis have been developed to ameliorate these problems.
One of these,Tree Trellisis a “lite” version of Rich Trellis
that restricts the user to two kinds of hierarchical argument
connectors: pro (supporting) and con (against). Preliminary
data suggest that Tree Trellis users use argument connectors
more consistently and arguments are subsequently easier to
compare (Chklovski, Ratnakar, & Gil 2005).

We have chosen to adopt Tree Trellis as the COLAB hy-
pothesis authoring tool because it expresses the basic hi-
erarchical support/dissent relationships between statements
that we believe analysts will need. Tree Trellis also pro-
vides a well-designed, intuitive user interface. The left half
of the browser window in Figure 4 shows an example of
the Tree Trellis interface. The interface currently displays
an argument supporting the beacon-threatened hypothesis.
The top-level statement (the “target hypothesis”) asserts that
group-01 threatens beaconB012. This claim is supported
by two additional statements, thatgroup-01 has capabil-
ities that overlap the vulnerabilities of the beacon and that
Group 1 is malicious. Capability overlap is in turn sup-
ported by evidence that the capabilities are carried by indi-
vidual hats in the group. The example also includes a “Con”
relationship, expressing a statement against the group hav-
ing the required overlapping capabilities: hatH0540 is no
longer carrying the remaining required capabilityC14. Re-
port 1719 is cited as evidence for this claim.

We are currently working on integrating Tree Trellis with
the COLAB blackboard. Part of this integration includes
making it easy to reference COLAB blackboard labels in
statements. Labels are depicted in Figure 4 as names that
begin with a colon. Under the hood, Trellis arguments are
represented as “score cards” that are communicated between
the Trellis engine and theTrellis Scorecardsblackboard
space. Because scorecards are full representations of the tree
argument and include blackboard label references, they can
be the subject of queries and other knowledge source pro-
cessing. For example, if the analyst asks for all arguments
that include hatsH0328 and H1024, the argument in our
example will be among those returned.

In our discussion of Figure 2 we also noted that the hy-
potheses depend on the relative rate at which properties of
the Hats world change. In COLAB, each hypothesis is
treated as afluent (McCarthy 1963): a proposition whose
truth value is extended over time. We represent this property
in Figure 4 by the two numbers following the word “Tick.”
The number in parentheses represents the time the hypothe-
sis was first asserted while the number outside represents the
last time the hypothesis was updated and asserted as being
true. For example, the statement that hatH1024 has capa-
bilities C02 andC03 was first asserted in tick 52 and still
holds at tick 73 (which in this example happens to be the
current tick). The statement that hatH0540 has capability
C14, however, has not been updated and is considered to
not hold after tick 72. One of the challenges of analysis is
determining the temporal boundaries of hypotheses.



Figure 4: The COLAB web interface. The left half of the browser window contains the interface to the Trellis argument
authoring tool. The upper right of the browser window contains the field for entering commands and queries. In the bottom
bottom right a view of the top-level of the blackboard is displayed.

Query Language
During an analysis session, the blackboard will rapidly fill
with many reports about events in the Hats world, the re-
sults of analysis tools and analyst-authored hypotheses (rep-
resented as Trellis score cards). In order to manage and ma-
nipulate this data, we are implementing a query language
facility based on the relational database model. The lan-
guage syntax is based on the SQL, a well-studied language
that is intuitive and has a long, successful history in practical
database applications (Elmasri & Navathe 1999).

In the relational model, an individual fact is represented
as a set of attributes with values. Facts are collected in ta-
bles in which each row represents a fact and each column
corresponds to an attribute; an attribute value corresponding
to the attribute of a particular fact is stored in the cell in-
dexed by the attribute column and fact row. Queries specify
information to extract from tables, and the results of queries
are expressed in new tables. We are setting up the query
framework in COLAB so that the spaces in the blackboard
are treated as a tables, and all queries result in tables stored
on the (relational) Table space of the blackboard.

select trade, giver, taker, capability,
meeting, tick

from reports
where (range ticks 10)

Figure 5: Example query retrieving all trade reports in the
past 10 ticks

The upper-right frame of the browser window in Figure 4
shows the command entry field and contains an example
query. This query specifies that a table of hats should be
retrieved from the :terrorist-hats table, where each hat that
appears in the new table must be near beaconB012 and
have capabilities that overlap with the beacon’s vulnerabili-
ties. The table resulting from this query will be displayed in
the lower-right of Figure 4 or in a separate window.

Because all reports are indexed by time, we are also pro-
viding facilities for specifying individual time intervals. Fig-
ure 5 is an example of a query asking for all reports of ca-
pability trades in the past 10 ticks. The query creates a new



table, where each fact is about a reported trade and includes
the hat that gave the capability, the that received the capa-
bility, the label of the meeting in which the trade took place,
and the time when the trade took place. If no specific time or
interval is specified, the query is assumed to be asking about
the reports in the current tick.

By default, a table resulting from a query remains in the
state it was in when the query was executed. Tables can
also be specified to update dynamically. A dynamic query
table looks like any other except that every time the table is
viewed, the query is run again and the table is updated to
contain the most up-to-date information.

Each table stored on the Tables space is indexed by a
unique label on the Labels space. These labels can be used to
reference tables in hypothesis arguments and other queries.

Knowledge Source Toolkit, Sensors and Alerts
Knowledge sources provide another facility for analyst in-
formation management. We are developing aknowledge
source toolkitas a set ofKS templates that analysts can spe-
cialize for user-defined tasks. One such task is scheduling
repeated information broker requests and other blackboard
queries (in fact, all queries are processed by queryKSs). An
analyst selects a query schedulingKSand fills in its slots, in-
cluding the query to be executed3, how often it is executed,
and what to do with the query results.

Another template allows analysts to definesensors. In
addition to specifying a query and a schedule for execution,
the analyst also defines a condition (using the same language
used to specify conditions in queries) that the sensor checks
each time it is executed. Based on the results of the condi-
tion test, theKS can be directed to perform simple actions,
including triggering activation of otherKSs, or updating a
dynamic query table.

Alertsare a special class of sensors whose actions include
sending messages to be displayed on the analyst user inter-
face (e.g., the bottom-right pane of the browser window in
Figure 4).

The following are examples ofKSs built out of the toolbox
templates:

Meeting Alert Any time two or more hats from a spec-
ified set of hats (e.g., all hats whose locations have just
been reported) meet at the same location for more than
two ticks, send an alert to the user that a meeting may
have just taken place (Along with location and time). An-
other sensorKSmay be defined to trigger when the meet-
ing alert is issued; this sensor may then send query to the
information broker asking whether a meeting has taken
place at that location.

Watchlist Scheduled QueryThis KS updates a “watch-
list” dynamic table to include any hats whose number of
meetings with known terrorists is above some threshold.
Alternatively, theKS may schedule execution of a suspi-
cion scoring analysis service and the suspicion scores of
hats above some threshold are included in the table

3if it is an information broker request, the analyst also specifies
how much to pay for the request.

Beacon Vulnerability SensorAfter each update to the
watchlist above, check whether any hats on the watchlist
have capabilities that overlap a specified beacon’s vulner-
abilities. If so, trigger a beacon threat alertKS.

Beacon Threat Alert Triggered by the Beacon Vulnera-
bility Sensor, thisKS tests whether hat(s) triggering the
vulnerability sensor are within some distance of the bea-
con. If so, then send an alert to the analyst.

The Knowledge Source Toolkit takes steps toward a lan-
guage for defining special purpose knowledge source, blur-
ring the line between human control and blackboard automa-
tion.

Blackboard Browsing
The Trellis hypothesis authoring tool and the query language
allow the analyst to visualize relations between hypotheses
and other information stored on the blackboard. Still, the
analyst will likely want a more generic method for browsing
blackboard contents, including the contents of spaces and a
representation of currently knowledge sources and their state
of activation. We are developing a hyperlinked navigation
tool for intuitive blackboard browsing. In the lower right
space of Figure 4 is simple textual summary of the black-
board spaces and their contents. In the browser, the names
for spaces will be hyperlinks, which when selected will dis-
play the specific contents of the space. These contents will
also be represented as hyperlinked names, which when se-
lected provide summary descriptions of the object with pos-
sible links to other objects. In future work we will explore
other approaches to visualizing blackboard spaces and hy-
pothesis relations.

Putting the pieces together
Now that we have presented each of the COLAB compo-
nents and along the way discussed how they related, we
can step back and again consider the system as a whole.
Figure 6 is a schematic of the COLAB architecture. The
schematic emphasizes the multi-agent configuration of CO-
LAB by showing two analyst environments and their rela-
tion to the Hats Simulator and shared blackboard workspace.
In this configuration, each analyst has their own information
broker, which may represent and deliver reports about differ-
ent aspects of the Hats domain. Both analysts interact with
the information broker and COLAB blackboard workspaces
through the COLAB user interface. Each analyst has their
own blackboard workspace and a set of domain and control
knowledge sources, including their own knowledge sources
built from the knowledge source toolkit. In this config-
uration, analysts collaborate with one another through the
shared workspace.

Implementation
COLAB is being developed in Macintosh Common Lisp
(MCL) 5.1 running on Macintosh OS X. For blackboard de-
velopment we are using the GBBopen blackboard frame-
work (http://gbbopen.org/). The web interface server
is written in Common Lisp and communicates with the
Apache webserver (http://httpd.apache.org/) through the
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mod lisp (http://www.fractalconcept.com/) Apache module.
We also make use of a number of available Lisp pack-
ages (http://lisp.t2100cdt.kippona.net/lispy/home). Except
for MCL and Mac OS X, all of these software packages are
open source.

Related Work
The COLAB project makes contact with a number of tech-
nologies and areas of active research. We restrict the follow-
ing discussion to a few representative projects in each area.
We have grouped the descriptions according to four topics.

Architectures
Artificial intelligence research has produced a very large
family of architectures for problem solving and reasoning.
Here we compare blackboards to two popular and well-
studied architectures: production rule systems and case-
based reasoning (CBR) systems. Blackboards, production
rules and CBR systems share the same intellectual roots, so
it is no surprise that much of their functionality overlaps.

In the classical conception of a production rule system,
knowledge consists of if-then style rules and assertions.
Similar to blackboard knowledge sources, each production
rule has an antecedent and a consequent. If the antecedent is
satisfied by existing assertions in a database, then it may be
selected to execute the consequent of the rule. Production
rules differ from deduction rules in that the rule consequent

may not only add new assertions to the database, but may
also delete assertions and have side-effects (such as execut-
ing other programs). An example of a long-running project
based on a production rule architecture is ACT-R (Anderson
& Lebiere 1998).

CBR systems take a different approach to representing
knowledge and its use in problem solving. In a CBR system.
previous problem solving solutions or strategies are stored as
“cases.” When a new problem situation is encountered, sim-
ilar, previously successful case scenarios are retrieved. An
attempt is made to fit one (or more) of these case solutions
to the current situation. In most cases, it won’t fit exactly,
so the case is modified, and if successful the modification is
stored as a new case for future use. Cases could be viewed
as knowledge sources and their retrieval and execution is
similar to knowledge source activation and selection. CBR
research provides sophisticated methods for retrieval based
on analogy and other mechanisms, as well as the possibility
of learning (adding new cases) over time (Kolodner 1993;
Watson & Marir 1994).

Capturing Knowledge and Reasoning

COLAB also makes contact with approaches to capturing,
representing and communicating human knowledge and rea-
soning. The general goal is to bridge the gap between in-
tuitive human forms of communication, such as iconic or
natural language expressions of human knowledge, and lan-



guages with unambiguous syntax and semantics that can be
processed by computer programs.

Blythe et al. (2001) describe a system that incorporates
a number of individual knowledge acquisition tools to pro-
duce an end-to-end tool that enables non-programmers to
author formal rules in the EXPECT representation and rea-
soning system. One of the themes of this system is inter-
action between the user the various tools to incrementally
formalize knowledge, such as the user’s preferences in plan-
ning travel. Trellis also fits into this theme. Chklovski,
Ratnakar, & Gil (2005) describe the Trellis tools as explor-
ing the tradeoffs in designing semi-formal representations so
that the system can provide useful assistance while minimiz-
ing the user’s effort in formalizing knowledge about the task
at hand.

Trellis and several other tools are specifically designed to
help users connect statements and author arguments that can
be visualized and reasoned over. SEAS, the Structured Evi-
dential Argumentation System, enables users to enter struc-
tured arguments that can then be revised in the light of new
evidence (Lowrance, Harrison, & Rodriguez 2001). Simi-
lar to Trellis, analysis is captured in a tree of relevant issues
and sub-issues that are assessed a score by an evidential rat-
ing system. Researchers working on the semantic web also
share the vision of providing a tool that can be used link con-
cepts and sources from digital libraries in a networked rep-
resentational environment. Shumet al. (2003) present work
on a system for representing scholarly discourse in this way.
These kinds of tools are also being used to help teach formal
and information reasoning. An example is the Reason!Able
argument mapping tool (van Gelder 2002).

Relational Data Management and Analysis
Intelligence professionals have to deal with an overwhelm-
ing amount of information. Much of this information is be-
coming increasingly available in relational databases. New
systems are being designed to represent, manage and ana-
lyze this data.

The Link Analysis Workbench (LAW) is designed to help
a user build and refine relational patterns used to search large
relational databases (Wolvertonet al. 2003). Robust search
based on pattern matching must deal with missing informa-
tion. Additionally, the analyst often does not know ahead
of time what they are looking for. For these reasons, LAW
employs a graph-based query facility that handles approxi-
mate matches based on graph edit distance, and query results
are ordered by degree of match. LAW also provides a web-
based graphical user interface for visualizing of relational
data as graphs and and for pattern authoring. The end re-
sult is a system in which the analyst can iteratively pose and
refine graph-pattern queries to search for information

Another system designed to facilitate iterative search
and refinement of data models is PROXIMITY (Neville &
Jensen 2002). PROXIMITY consists of a graph database
and a set of statistical relational modeling tools. PROXIM-
ITY also includes a graphical query language calledQGRAPH

(Blau, Immerman, & Jensen 2002).QGRAPH is similar to the
LAW graph-query facility, but also has a clear formal se-
mantics and has been shown to have the expressive power of

a subset of first-order logic with counting quantifiers.
Another feature of intelligence data is that is that it cru-

cially involves time. This raises a host of new challenges
for database management and data access. Recent work in
database research is devoted to representing temporal data
streams. The Stanford STREAM Database project is devel-
oping a data stream management system capable of handling
multiple continuous queries over data streams and stored re-
lational data (Babcocket al. 2002; Arasu, Babu, & Widom
2005; Arasuet al. 2005).

Collaboration Environments
Several of the systems already mentioned, in particular
work on the semantic web and volunteer knowledge cap-
ture, could also be considered as examples of collaboration
environments. Another good example of a collaborative en-
vironment is the Collaborative Virtual Workspace (CVW)
(Spellmanet al. 1997; Maybury 2001). The CVW system
allows for people in different locations to interact with doc-
uments and each other in a virtual space. CVW integrates
tools for audio and video conferencing, document manage-
ment, chat, and graphical sketching (whiteboarding). The
system has been successfully fielded in the Air Force’s Joint
Expeditionary Force Experiment (JEFX) and another gov-
ernment organization supporting 4000 active users around
the globe (Maybury 2001). More recently, commercial sys-
tems have been offered that also support much of the same
functionality, such as Microsoft Office Live Meeting.

Concluding Remarks
In the introduction we argued that there is a need for a con-
figurable laboratory environment in which variables hypoth-
esized to influence collaboration and shared sensemaking
can be manipulated and studied. We have made design de-
cisions with the goal that COLAB can be adapted to dif-
ferent work environment conditions. Laboratories are not a
replacement for studies of professional analysts in real in-
telligence analysis situations. But purpose of COLAB is to
provide a unique opportunity to study, in detail, analyst per-
formance in an environment in which we have control over
both the problem situation faced by analysts and the methods
analysts have available for performing their analysis. Be-
cause we know the state of the Hats Simulator, we can keep
track of the steps analysts take in their analysis and compare
them to information that was actually available in the Hats
simulation and on the blackboard. We can identify when in-
formation was available but not used and analyze situations
in which communication was not effective and sensemaking
floundered.

We also noted in the introduction that COLAB is intended
for two other applications: a test bed for proposed analysis
tools in the analyst working environment of the future, and
an environment for training analysts. In the description of
the COLAB blackboard we mentioned some proposed anal-
ysis tools, such as algorithms for suspicion scoring and find-
ing community structure. In general, these tools are only
useful to the extent that they help analysts do their job bet-
ter. COLAB, along with the Trellis project, the Link Analy-
sis Workbench, Proximity, and SEAS, is part of an important



class of systems that explore the space of analysis environ-
ments that bring human users into the analysis loop.

Here is where the project stands. The Hats Simulator and
information broker are currently implemented. The founda-
tion for the COLAB blackboard is implemented and reports
from the information broker are automatically processed and
the Labels space is updated. We have designed and are cur-
rently implementing the query language facilities. The foun-
dation for basic web service is in place and we are working
on integrating Tree Trellis. The next milestone is working
prototype of COLAB for a single user, which we anticipate
meeting by early summer. We will then begin user testing
and extend the framework for multiple users.
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